Category: Carbon Offsets

Helping Species Adapt to Climate Change

2 Comments
Help species trying to escape climate change. Help Saving Nature plant trees to offset your carbon footprint and give species an escape route.
Help species trying to escape climate change. Help Saving Nature plant trees to offset your carbon footprint and give species an escape route.

July 19, 2019

In the face of climate change, species are fleeing to the poles and to higher elevations.Ā  Saving Nature is trying to help them get there.

HELPING SPECIES ADAPT TO CLIMATE CHANGE

Every year, the worldā€™s increasing population adds approximately 37 billion tons of carbon dioxide into the atmosphere from industry, agriculture, forestry, utilities, and transportation.Ā 

Deforestation ā€” of which the burning of tropical forests is the major component ā€” contributes about 10% of these emissions. It is also the principal driver of biodiversity loss.

Our unrelenting carbon dioxide emissions have surpassed the planetā€™s ability to absorb these greenhouse gases, leading to climate disruption and species extinctions.

Species Moving to Higher Elevations as the Climate Warms

While governments struggle with finding solutions for climate change, species must seek higher ground with habitable temperatures for their survival.

Even under the most optimistic scenarios, we arenā€™t going to reduce the high levels of carbon dioxide anytime soon. Species do not have the option of waiting. They are moving towards the poles and, in the tropics, to higher elevations. That is, when they can.

Some species may not reach the refuge of higher elevations and will go extinct. The cycle of deforestation and climate change blocks their passage through degraded wastelands. As a result, they become trapped them in an uninhabitable landscape, dooming them to extinction.

Evidence from a 40-year Study: 1978 vs. 2018

Ph.D. student, German Forero-Medina, under the direction of Dr. Pimm, examined the distribution of birds along an elevation gradient in the mountains of Peru. Forty years earlier, Dr. Pimmā€™s Duke colleague, John Terborgh, had surveyed this same mountain chain at various elevations.

Ā 

Returning to the original sites and using the same methods, the team compared where the birds are now versus in the past. Simply, they are at higher elevations ā€” though not as high as one expects.

Ā 

This suggests that the already threatened birds in the isolated patches of forest are in deep trouble. Isolation is bad enough, the inability to move to higher elevations is even worse news.

Saving Nature Builds Corridors to Safe Harbors

Our approach is a simple, effective, and scalable solution to reducing carbon dioxide and preventing extinctions. Restoring degraded land and reconnecting isolated forests achieves two objectives ā€“ it absorbs atmospheric carbon emissions and helps species adapt to climate change by finding safe harbor.

Ā 

Simply put, the corridors we create in biodiversity hotspots connect forest fragments and liberate species trapped and isolated in increasingly inhospitable habitats. By reconnecting isolated forests, we create vital migration routes for species seeking higher ground.

Ā 

In doing so, we get massive leverage by financing local partners to buy relatively small amounts of land to create significant protected refuges and strategic connections. Merging isolated forest fragments is critical to facilitating colonization of previously inaccessible areas. Doing so diversifies genetics and builds resiliency. In this era of climate change, the forest corridors also serve as the routes to survival as the climate warms.

How Can You help?

We will continue to use both science and savvy to connect, protect, and restore forest corridors. We invite you to join us in this ambitious effort!

Donating to Saving Nature puts trees in the ground for biodiversity, and sequesters carbon from the atmosphere. In short, supporting Saving Nature helps fight the two most pressing environmental problems the world facesā€”mass species extinction and global warmingā€”at the same time!

Let’s Talk Carbon!

Offest Your Carbon Footprint by Planting Trees

July 5, 2019

Stuart Pimm

HOW TO BECOME CARBON NEUTRAL

Letā€™s talk carbon.Ā Saving Nature offsetsĀ carbon emissionsĀ surprisingly cheaplyĀ and, in doing so,Ā helpsĀ species adapt to climate change.

This can be aĀ complicated subject.Ā Letā€™s simplify it.

We askĀ eachĀ supporterĀ for $100 per year.Ā That will make the average US citizen ā€œcarbon neutralā€Ā ā€”Ā theĀ nativeĀ trees we plantĀ to restore forestsĀ with thatĀ moneyĀ will soak up as much carbon dioxide from the atmosphere thatĀ he or sheĀ puts into it each year.

Carbon Dioxide Causes Global Warming

Our various human activitiesĀ put aboutĀ 37Ā billion tons of carbonĀ dioxideĀ into the atmosphereĀ each year. Thatā€™s from burningĀ coal and gasoline,Ā of course,Ā but also by burningĀ forests.

We measure increaseĀ in carbon dioxide in the atmosphereĀ with great precision and have done so for decades.Ā As the concentration increases, it traps more of the sunā€™s energy and so theĀ planetĀ warms.Ā That massively disrupts the climate, harming people and biodiversity alike.

How to Become Carbon Neutral

Taking actionĀ to erase your carbon footprintĀ isĀ as simple as answering three questions.Ā Ā 

1. How much carbon dioxide am I putting into the atmosphere each year?

If you are average and live in the USA, the answer is 16 tons.

2. How much carbon does a forest soak up?

Ā 

Growing trees take carbon dioxide from the atmosphere. So how many trees do you need to plant so that you are ā€œcarbon neutral?ā€ That is, how many trees with your name on them are needed to soak up ā€” technically, the word is sequester ā€” as much carbon dioxide as your lifestyle produces.Ā 

Ā 

The answer is that the corridors we reforest at Saving Nature soak up about that same amount per hectare per year. Those corridors continue to do that for twenty years or more and at a slower rate thereafter. The bottom line is: help us plant and protect a hectare of forest and youā€™ll be carbon neutral for decades.

3. And finally, how much does it cost to be carbon neutral?

Tropical forests soak up about 26 tons of carbon dioxide per hectare per year as they grow back. They do so for 20 years ā€” and usually considerably longer. Close enough, buying and reforesting a hectare of tropical forest will offset almost all a typical Americanā€™s carbon dioxide emissions for 20 years.

Ā 

So how much does a hectare cost? Well, that depends on where we help our partners buy land and whether they plant the trees. Apart from some very difficult restorations, for which we solicit support from foundations, our costs are about $4 a ton per carbon dioxide. So about $100 per year will offset a typical Americanā€™s carbon emissions. (Other nations have different and usually lower ones.)

4. How to help combat global warming and save species?

We will continue to use both science and savvy to connect, protect, and restore forest corridors. We invite you to join us in this ambitious effort! Donating to Saving Nature puts trees in the ground for biodiversity, and sequesters carbon from the atmosphere.

Please support Saving Nature in fighting global warming ā€” at the same time you’ll be fighting mass species extinctions!

Frequently Asked Questions About Carbon Offsets

Offest Your Carbon Footprint by Planting Trees

July 10, 2019

Frequently Asked
Questions About
Carbon Offsets

Welcome to our Frequently Asked Questions page about using a carbon footprint calculator and carbon offsets!Ā 

Here, we aim to address common queries regarding carbon offsetting, a crucial tool in combating climate change. Whether you’re new to the concept or looking to deepen your understanding, this guide is designed to provide clarity on how carbon offsets work, their impact, and how they can be utilized to reduce your carbon footprint. If you’ve used a carbon footprint calculator and are wondering how to offset your carbon footprint, you’ve come to the right place. Read on to explore answers to the most pressing questions surrounding carbon offsets.

1. What are carbon offsets?

We all produce carbon as a result of using fossil fuels directly, or indirectly when we use products that were produced using fossil fuels. For example, we directly produce carbon when we drive a car or take a flight. When you eat food that has been produced with artificial fertilizers and pesticides (which are made from oil) you are indirectly producing carbon. The amount of carbon you produce is your ā€œcarbon footprint.ā€ On average, each US consumer produces about 26 tons of carbon dioxide per year. (Thatā€™s 7 tons of carbon.)

Carbon offsets are a way to compensate for carbon dioxide (CO2) emissions by funding projects that reduce or remove greenhouse gas emissions from the atmosphere. An offset works by engaging in an activity that does the opposite. Instead of producing carbon, you do something to absorb carbon.

Luckily, plants are very good at this. Whenever you plant something, the plant will be absorbing carbon that would otherwise remain in the atmosphere and contribute to global warming.

Professor Pimm, Saving Nature’s Founder and President, likes to lead an exemplary, energy efficient life, except he flies a hundred thousand miles a year or more. So, using our carbon calculator for flight emissions, he determines how many tree to plant to offset his carbon emissions from flying.Ā  For example, a return flight to Rio de Janeiro puts about 1 ton of carbon dioxide into the air, per person. Thatā€™s about $4 worth ā€” much less than a weekā€™s supply of the coffee he drinks. (Biodiversity friendly, fair trade, organic, of course.)

Louie Psihoyos, Oscar-winning director, asked Pimm to be in his documentary Racing Extinction. Pimmā€™s condition was that there would be a donation to offset the filmā€™s carbon emissions. Psihoyos and his team made a very detailed calculation. It came to close to what Pimm had suggested on the simple basis of how many people worked for how many months and how many flights they took. After all that, Psihoyos felt that the donation was so small, he gave several times the calculated amount, for which we were very grateful. If you wait until the very end of the documentary, you will see it paid for trees planted at Jama Coaque, Ecuador.

2. How do carbon offsets help reduce emissions?

By investing in carbon offset projects, individuals and organizations can effectively counterbalance their own carbon emissions. For example, if you take a flight and calculate your carbon footprint using a carbon footprint calculator, you can then purchase carbon offsets to “offset” the emissions from your flight.

3. How do I offset my carbon footprint?

To offset your carbon footprint, you can calculate the emissions from your activities using a carbon footprint calculator and then purchase carbon offsets from reputable providers. These offsets fund projects that reduce or remove an equivalent amount of CO2 from the atmosphere.

4. Should I use a carbon footprint calculator to work out my annual carbon emissions?

Carbon calculators are a great way to estimate your annual carbon emissions. Our carbon footprint calculator is based on the EPA estimates for carbon emissions. We also help determine how many trees to plant to offset your carbon footprint with a donation to Saving Nature.

Check our our carbon footprint calculator.

5. How does donating to Saving Nature offset my carbon footprint?

At Saving Nature, weā€™re keen to slow the extinction rate and, in the process, we plant a lot of trees that offset carbon emissions. When you donate to Saving Nature, we channel funds to turn degraded cattle pastures into forests. As the forests regrow on the land we help acquire, they sequester about 26 tons of carbon dioxide (7 tons of carbon) per hectare per year. This sequestration rate continues for about 20 years, then continues, but at a slower rate.Ā 

Therefore, over 20 years,we estimate that each hectare we acquire sequesters at least 540 tons of carbon dioxide (140 tons of carbon). We make deals to purchase and restore land at under $2,000 per hectare, so we are recovering carbon dioxide from the atmosphere at about $4 per ton. (Most of our deals are much cheaper than that. For the ones that are more expensive, we seek help from foundations).

6. Is Saving Nature’s carbon certified?

This is the question we get most from companies. There are certified carbon offsets and that allows them to be traded. Now, certification is a good idea. It creates a product that companies can trade because everyone trusts those who do the certification. We are working to certify our carbon credits in Colombia.

7. What are the scientific facts about global warming?

First, the emissions. Global carbon emissions are about 10 billion tons of carbon per year. That goes into the atmosphere as 37 billion tons of carbon dioxide ā€” a greenhouse gas. Thatā€™s about 1.5 tons of carbon (5.5 tons of carbon dioxide), per person per year, but rich countries emit far more than poor ones.Ā 

Deforestation ā€” of which the burning of tropical forests is the major component ā€”contributes about 10% of those emissions. Some tropical countries have much higher carbon emissions than one might expect from their industrial activities.Ā Ā 

8. How much carbon is there in forests and how much do forests sequester when we replant them?

A recent study by Saatchi et al. maps current estimates of how much biomass there is in forests.The units on the map are in megagrams, which is a ton ā€” and the measure is of biomass.Ā  About half of biomass is carbon.Ā  In most of the places where Saving Nature restores forests, thereā€™s a minimum of 300 tons of biomass or 150 tons of carbon per hectare.

Graph

These are the areas shown in orange or red. (One Saving Nature site is in dry forest and the amount is less.)Ā  A variety of other papers show averages above 200 tons of carbon per hectare, especially in the wettest forests.Ā  As luck would have it, there is a detailed study done, in part, at one of the key Saving Nature sites: La Mesenia in Colombia. (Not luck, really: when one protects forests, one provides a place for scientists to work!) Gilroy et al. show that the primary forest there had 200 tons of carbon per hectare.

This study also shows something else. The forests go from about 10 tons of carbon per hectare as pastures to about 100 tons in about twenty years ā€” so an average of about 4.5 tons per year, but higher in the first decade than the second.Ā  Itā€™s much harder to study the change in forest biomass than just the biomass ā€” one needs several measurements, of course.Ā 

A recent paper by Poorter et. al.1 is a massive compilation of the available estimates, by dozens of people who work in this field. They presented many graphs comparable to the one by Gilroy et al. and concluded that over twenty years, recovering forests sequestered an average of 3 tons of carbon per year. Wetter sites accumulated carbon faster than dry ones. Their results predict that the places where Saving Nature has its projects would accumulate 150 to 200 tons of biomass (so 75 to 100 tons of carbon) in 20 years, so at just under 4 to about 5 tons of carbon per yearĀ  Interestingly, they showed a median time of 66 years to reach 90% of the carbon in old forests ā€” a result broadly comparable with the graph above.

So, our land purchases are indeed the gift that keeps giving and giving. In our calculations, weā€™ve used a higher annual rate of carbon sequestration, but a much shorter period over which the carbon accumulates.Ā 

9. Can you explain carbon math?

Well, yes, if you insist. The bad news is that different publications use different units.Ā  We use metric tons of carbon. Some publications talk about carbon, some about carbon dioxide, and some donā€™t tell you which. A ton of carbon becomes 3.67 tons of carbon dioxide when you burn it. (Thatā€™s because the molecular weight of carbon is 12 and carbon dioxide is 44: 44/12 = 3.67.)Ā  And some studies use biomass. About half the biomass of wood is carbon.

We use hectares, 100 metres by 100 metres, and 1 hectare is roughly 2.5 acres. There are 100 hectares to a square kilometre. Some publications use hectares, some square kilometres, but worst of all,Ā  the Food and Agriculture organisation uses 1,000 hectares ā€” or 10 square kilometres.

As if this wasnā€™t bad enough! Some studies use tons, while others use megagrams. A megagram is, well, a ton. And after all that you will be relieved to know that one Imperial ton is almost the same as a metric done (1 ton = 1.02 metric tons). Weā€™re using metric tons.Ā  The worst news of all is that many studies donā€™t say what they are using! (It can take an age to find out what they actually mean.)

10. How can I teach the carbon cycle to high school students?

Teaching children about the carbon cycle doesnā€™t have to be confusing. Once they understand the relationship between trees and climate change, they can be climate change ambassadors to friends and family.

Contact Professor Pimm for details of his presentation to High Schools on how to estimate how much carbon there is in a forest.Ā 

11. What can I do to fight climate change?

Calculating and offsetting your carbon footprint by planting trees to restore rainforests is a great way to take personal responsibility climate change. The next step is knowing how many trees to plant to offset your carbon footprint. Our carbon footprint calculator will help you do both.Ā 

Donating to Saving Nature to plant trees to offset carbon dioxide and rescue biodiversity solves the two most pressing environmental problems the world facesā€”mass species extinction and deforestationā€”at the same time!Ā Ā We will continue to use both science and savvy to connect, protect, and restore forest corridors. We invite you to join us in this ambitious effort!Ā 

Please support forest restoration and connectivity, and share our hope for the future of species struggling for survival in the face of global warming!

Footnotes

1. Poorter L, Bongers F, Aide TM, Zambrano AM, Balvanera P, Becknell JM, Boukili V, Brancalion PH, Broadbent EN, Chazdon RL, Craven D. Biomass resilience of Neotropical secondary forests. Nature. 2016 530:211 2.

FIGURE 1: Map of carbon in tropical forests: from Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ET, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences. 2011 Jun 14;108(24):9899-904. 3.

FIGURE 2: Accumulation of carbon in regenerating tropical forests. From Gilroy JJ, Woodcock P, Edwards FA, Wheeler C, Baptiste BL, Uribe CA, Haugaasen T, Edwards DP. Cheap carbon and biodiversity cobenefits from forest regeneration in a hotspot of endemism. Nature Climate Change. 2014 Jun;4(6):503.

Help Us Have a Bigger Impact

Give Someone A ForestĀ 

Offset someone’s carbon footprint this year and you are giving two gifts. The first for your loved one. The second for the planet.

The time is now to enlist new trees in the fight against climate change

before you fly

Sign-Up for Our Newsletter

Stay connected for good news from the front lines of conservation.

Skip to content